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Abstract

The n-card problem is to determine the minimal intervals [u, v] such that for every n × n
stochastic matrix A there is an n×n permutation matrix P (depending on A) such that tr(PA) ∈
[u, v]. This problem is closely related to classical mathematical problems from industry and
management, including the linear assignment problem and the travelling salesman problem.
The minimal intervals for the n-card problem are known only for n ≤ 4.

We introduce a new method of analysis for the n-card problem that makes repeated use of
the Extreme Principle. We use this method to answer a question posed by Sands, by showing
that [1, 2] is a solution to the n-card problem for all n ≥ 2. We also show that each closed
interval of length n

n−1 contained in [0, 2) is a solution to the n-card problem for all n ≥ 2.

1 Introduction

Let n ≥ 2 be an integer. An n× n stochastic matrix is an n× n matrix (aij) of non-negative real
numbers, each of whose row sums is 1. A transversal sum of (aij) is a sum of the form

∑n
i=1 aσ(i),i,

for some permutation σ of {1, 2, . . . , n}. A solution to the n-card problem is an interval [u, v] such
that every n × n stochastic matrix contains at least one transversal sum in [u, v]. Equivalently, a
solution to the n-card problem is an interval [u, v] such that for every n × n stochastic matrix A
there is an n × n permutation matrix P such that tr(PA) ∈ [u, v]. We wish to determine the
minimal solutions to the n-card problem for each n, namely those solutions [u, v] for which no
proper subinterval of [u, v] is a solution.

The n-card problem is closely related to well-known mathematical problems with industrial
and management applications, involving the possible values of tr(PA) for a permutation matrix P
and a fixed square matrix A. In particular, the linear assignment problem, “one of the most fa-
mous problems in linear programming and in combinatorial optimization [BDM09],” is to minimize
tr(PA) over all permutation matrices P (see [BDM09, Chapter 4] for a detailed historical account of
the development of algorithms for its solution, and an equivalent formulation in terms of weighted
bipartite matchings); the travelling salesman problem is the special case in which the permutation
corresponding to P is cyclic [Flo56].
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The terminology of the n-card problem reflects its original formulation [San01], [LS05] involving
a set of n cards, each containing n non-negative real numbers written in a row and summing to 1,
with the transversal sum representing the diagonal sum formed when the cards are placed one
below the other according to some permutation. In 2001, Sands [San01] asked for a proof that[

1
2 , 3

2

]
is a solution to the 3-card problem. Lenza and Sands [LS05] introduced the generalization

to the n-card problem in 2005.
The interval [0, 1] is a minimal solution to the n-card problem for all n ≥ 2 [San11, Lemma 3],

but it is not the only minimal solution. Indeed, it is easily checked by hand that the minimal
solutions to the 2-card problem are

[0, 1], [1, 2]. (1.1)

The minimal solutions to the 3-card problem are [LS05]

[0, 1],
[

1
2 , 3

2

]
, [1, 2], (1.2)

and the minimal solutions to the 4-card problem are [LS05], [San11]

[0, 1],
[

1
3 , 4

3

]
,

[
2
3 , 5

3

]
, [1, 2]. (1.3)

The method of [LS05] and [San11] is to establish a particular interval [u, v] as a solution to the
n-card problem (for n = 3 or 4), by using intersecting permutations to show that the number of
transversal sums greater than v, plus the number of transversal sums less than u, is always less
than n!. The method has two drawbacks: it relies on a laborious case analysis for n = 4, and does
not extend to n ≥ 5 [LS05, p.6].

In this paper we introduce a new method for analysing the n-card problem that makes repeated
use of the Extreme Principle [Zei07]. We believe that this method could shed light on other problems
involving tr(PA), where P is a permutation matrix and A is a fixed square matrix. The Extreme
Principle directs attention to the “largest” and “smallest” elements of a problem. In the present
context, we assume for a contradiction that no transversal sum of an n × n stochastic matrix lies
in some interval [u, v], and then consider the smallest transversal sum d greater than v. Then, if
a transversal sum is less than d, it must be less than u. We seek such transversal sums, involving
exactly n− 2 of the original summands of d, in order to reach a contradiction. We thereby obtain
strong new restrictions for all n ≥ 5. In particular, we solve Problem 5 of [San11] as follows.

Theorem 1.1. For all n ≥ 2, the interval [1, 2] is a solution to the n-card problem.

We also prove the following result.

Theorem 1.2. For all n ≥ 2, each closed interval of length n
n−1 contained in [0, 2) is a solution to

the n-card problem.

The length n
n−1 in Theorem 1.2 is the smallest possible for a general interval, because the

n × n stochastic matrix having one row
(
0, 1

n−1 , 1
n−1 , . . . , 1

n−1

)
and n − 1 rows (1, 0, 0, . . . , 0) has

transversal sums of 0 and n
n−1 only.

On the other hand, the known complete set of minimal solutions (1.2) for n = 3 and (1.3) for
n = 4 shows that the interval length in Theorem 1.2 can be reduced to 1 for specific intervals. By
reference to particular n×n stochastic matrices, Sands [San11] showed that every solution to the n-
card problem for n ≥ 2 must contain a length 1 interval

[
k

n−1 , 1+ k
n−1

]
for some k ∈ {0, 1, . . . , n−1}.

Problem 3 of [San11] asks whether each such length 1 interval is itself a solution to the n-card
problem, which would imply that the complete set of minimal solutions to the n-card problem
comprises these n intervals. This question remains open for n > 4.
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2 The interval [1,2]

In this section we prove Theorem 1.1. We firstly establish some preliminary lemmas.

Lemma 2.1. Let (aij) be an n× n stochastic matrix, all of whose transversal sums lie outside an
interval [u, v] containing 1. Then (aij) has at least one transversal sum less than u, and at least
one transversal sum greater than v.

Proof. Each entry of (aij) is contained in exactly (n − 1)! transversal sums, so the mean of all
transversal sums is (n − 1)!(

∑
i,j aij)/n! = 1. Therefore at least one transversal sum is at most 1,

and so by assumption less than u. Similarly, at least one transversal sum is greater than v.

An immediate consequence of Lemma 2.1 is that, as noted earlier, [0, 1] is a solution to the
n-card problem for all n ≥ 2.

The rows and columns of an n×n stochastic matrix can be permuted without changing the set
of its n! transversal sums. Our method relies on examining the effect of transposing two rows of an
n× n stochastic matrix, and thereby bounding the matrix entries. We now show that if an n× n
stochastic matrix has a sufficiently large diagonal sum then there must be a transposition of two
rows that decreases this diagonal sum. We prove this result for the following slightly more general
case of an n× n substochastic matrix (each of whose row sums is at most 1).

Lemma 2.2. Let (aij) be an n × n substochastic matrix. Suppose (aij) has diagonal sum greater
than 1. Then

akk + a`` > ak` + a`k for some k, `.

Proof. Suppose, for a contradiction, that aii + ajj ≤ aij + aji for all i, j. Sum this inequality
over all i, j to obtain 2n

∑
i aii ≤ 2

∑
i,j aij ≤ 2n, since by assumption the row sums of (aij)

are each at most 1. This implies that the diagonal sum satisfies
∑

i aii ≤ 1, giving the required
contradiction.

We next give conditions under which the sum of two diagonal entries of an n × n stochastic
matrix can be bounded from below.

Lemma 2.3. Let (aij) be an n×n stochastic matrix with diagonal sum d, and suppose all transversal
sums of (aij) lie outside the interval [u, d). Then, for all i, j,

aii + ajj > aij + aji implies aii + ajj > d− u.

Proof. Suppose aii + ajj > aij + aji. Then the positive quantity aii + ajj − aij − aji is the decrease
in the diagonal sum caused by transposing rows i and j of the matrix, and so by assumption is
greater than d− u. We therefore have aii + ajj ≥ aii + ajj − aij − aji > d− u.

Define an n × n stochastic matrix (aij) to be diagonally ordered if its diagonal entries are in
non-increasing order:

a11 ≥ a22 ≥ · · · ≥ ann.

We are now ready to prove Theorem 1.1.
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Proof of Theorem 1.1. We know from (1.1) and (1.2) that the result holds for n = 2 and 3, so
we may take n ≥ 4. Suppose, for a contradiction, that (aij) is an n × n stochastic matrix whose
transversal sums all lie outside the interval [1, 2]. Then by Lemma 2.1, (aij) has a transversal sum
greater than 2 and a transversal sum less than 1. Let 2 + ε be the smallest transversal sum greater
than 2, and reorder the rows and columns of (aij) so that the summands of this transversal sum
occur on the matrix diagonal and so that the matrix is diagonally ordered. By Lemma 2.3 with
d = 2 + ε and u = 1,

aii + ajj > aij + aji implies aii + ajj > 1 + ε. (2.1)

Now the (n− 1)× (n− 1) submatrix of (aij) formed by deleting the first row and column has
diagonal sum 2 + ε− a11 > 1. Apply Lemma 2.2 to this submatrix to show that, for some distinct
k > 1 and ` > 1,

akk + a`` > ak` + a`k.

We therefore have akk + a`` > 1 + ε by (2.1), and so

a22 + a33 > 1 + ε (2.2)

since the matrix is diagonally ordered and k, ` are distinct. Since the diagonal sum of (aij) is 2+ ε,
we have

aii + a11 ≤ 2 + ε− a22 − a33 for all i > 3,

and therefore aii + a11 < 1 for all i > 3, by (2.2). Then, since the matrix is diagonally ordered,

aii + ajj < 1 for all i, j with i > 3,

which in turn implies by (2.1) that

aii + ajj ≤ aij + aji for all i, j with i > 3. (2.3)

We complete the proof by showing that (2.2) and (2.3) force the sum of the entries of (aij) to
be too large. We have ∑

i,j

aij ≥
∑
i≤3

aii +
∑
i>3

aii +
∑

i>3, j≤3

(aij + aji)

≥ (n− 2)
∑
i≤3

aii + 4
∑
i>3

aii

by substitution from (2.3). Therefore∑
i,j

aij ≥ (n− 2)
∑
i≤3

aii + 2
∑
i>3

aii

= (n− 4)
∑
i≤3

aii + 2
∑

i

aii

≥ (n− 4)(1 + ε) + 2(2 + ε)

by (2.2), using n ≥ 4. Therefore
∑

i,j aij > n, which is a contradiction because each row sum of
(aij) is 1.
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3 Intervals of length n
n−1

In this section we prove Theorem 1.2.

Proposition 3.1. Let n ≥ 4 and let (aij) be a diagonally ordered n×n stochastic matrix. Suppose
the diagonal sum d of (aij) satisfies d ∈ (1, 2]. Then (aij) has a transversal sum lying in the interval
[d− n

n−1 , d).

Proof. Suppose, for a contradiction, that no transversal sum of (aij) lies in the interval [d− n
n−1 , d).

Then by Lemma 2.3 with u = d− n
n−1 ,

aii + ajj > aij + aji implies aii + ajj >
n

n− 1
. (3.1)

Since d > 1, Lemma 2.2 gives

akk + a`` > ak` + a`k for some distinct k, `,

and it follows from (3.1) that akk + a`` > n
n−1 . Since the matrix is diagonally ordered and k, ` are

distinct, this implies
a11 + a22 >

n

n− 1
(3.2)

and
a11 >

1
2
· n

n− 1
. (3.3)

We now claim that

aii + ajj ≤
n

n− 1
for all distinct i > 1 and j > 1. (3.4)

Suppose otherwise, for a contradiction, so that arr + ass > n
n−1 for some distinct r > 1 and s > 1.

Since the matrix is diagonally ordered, this gives

a22 + a33 >
n

n− 1
. (3.5)

Therefore, for all i > 3, we have aii + a11 ≤ d − a22 − a33 < n−2
n−1 because d ≤ 2. Since the matrix

is diagonally ordered, we then have

aii + ajj <
n− 2
n− 1

for all i, j with i > 3,

which by (3.1) implies
aii + ajj ≤ aij + aji for all i, j with i > 3. (3.6)

Write ∑
i,j

aij ≥
∑
i≤3

aii +
∑

i>3,j≤3

(aij + aji)

≥ (n− 2)
∑
i≤3

aii + 3
∑
i>3

aii
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by substitution from (3.6), so that∑
i,j

aij ≥ (n− 2)
∑
i≤3

aii

> (n− 2) · 3
2
· n

n− 1
from (3.3) and (3.5). Since

∑
ij aij = n and n ≥ 4, this is a contradiction and proves the claim (3.4).

It then follows from (3.1) that

aii + ajj ≤ aij + aji for all distinct i > 1 and j > 1.

Summing over all i, j satisfying 1 < i < j, we find that

(n− 2)
∑
i>1

aii ≤
∑

1<i<j

(aij + aji). (3.7)

Now let m be the largest integer i such that a11 + aii > n
n−1 . Note that m ≥ 2, by (3.2). By (3.1)

we have a11 + aii ≤ a1i + ai1 for i > m, so that

a11 ≤ a1i + ai1 for i > m. (3.8)

We now show that (3.7) and (3.8) force the entries of (aij) to be too large. We have∑
i,j

aij ≥ a11 +
∑
i>1

aii +
∑
i>m

(a1i + ai1) +
∑

1<i<j

(aij + aji)

≥ (n−m + 1)a11 + (n− 1)
∑
i>1

aii

by substitution from (3.7) and (3.8). Therefore∑
i,j

aij ≥ (n−m + 1)a11 + (n− 1)
∑

1<i≤m

aii

> (n−m + 1)a11 + (n− 1)(m− 1)
(

n

n− 1
− a11

)
by definition of m and the diagonal ordering of (aij), and so∑

i,j

aij > n
(
m− 1− (m− 2)a11

)
.

Since m ≥ 2 and a11 ≤ 1, this implies the contradiction
∑

i,j aij > n and so completes the proof.

We now combine Proposition 3.1 with Theorem 1.1 to prove Theorem 1.2.

Proof of Theorem 1.2. We know from (1.1) and (1.2) that the result holds for n = 2 and 3, so
we may take n ≥ 4. Suppose, for a contradiction, that (aij) is an n × n stochastic matrix whose
transversal sums all lie outside the interval

[
u, u + n

n−1

]
for some u ∈

[
0, n−2

n−1

)
. Since this inter-

val contains 1, by Theorem 1.1 the matrix (aij) therefore has a transversal sum in the interval(
u + n

n−1 , 2
]
. Let d be the smallest such transversal sum. Reorder the rows and columns of (aij)

so that the summands of this transversal sum occur on the matrix diagonal and so that the matrix
is diagonally ordered. Then by Proposition 3.1, (aij) has a transversal sum lying in the interval[
d− n

n−1 , d
)
. By choice of d, this gives the required contradiction.
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